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SUMMARY:  

Although the evaluation of the critical galloping conditions is apparently very simple for 1 degree-of-freedom systems 

(whose expression is reported by many codes and guidelines), it actually hides pitfalls due to the uncertainty inherent 

in practically all the parameters involved, in particular in the static aerodynamic coefficients (besides the structural 

damping ratio). Furthermore, if one intends to evaluate the possible non-linear behaviour of the system, as occurs in 

energy harvesting problems, the uncertainties explode since high-order derivatives are needed to adequately describe 

the aerodynamic force coefficient. An Artificial Neural Network algorithm, suitably trained on simulated experimental 

data, appears to be a possible tool for providing more reliable evaluations of critical conditions and non-linear 

responses. The authors intend to investigate the benchmark case of the square section with sharp and rounded corners, 

on which many experimental, wind tunnel data are available. A preliminary example of numerical simulation results 

concerning galloping critical velocity is presented and compared against the theoretical solution. 
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1. INTRODUCTION AND AIM 

Galloping is an important aeroelastic phenomenon that can be either detrimental to a low-damped, 

slender structure or possibly exploited for energy harvesting purposes (e.g., Hémon et al., 2017). 

Even though the classical galloping theory is based on the quasi-steady approach (e.g., Païdoussis 

et al., 2011), the application of which may be questionable in many real cases, it remains a widely 

used analysis approach by engineers and it is present in all design standards (e.g., CNR, 2019; EN 

1991-1-4, 2010). Moreover, the quasi-steady aerodynamic theory has been usually considered 

acceptable to study this phenomenon for a variety of structures, since the earliest studies (e.g., 

Parkinson and Smith, 1964; Novak, 1972) until the latest applications as a wind-based harvester 

(e.g., Zhang et al., 2021). Galloping usually manifests itself as a strong transverse self-excited 

oscillation triggered above a critical wind velocity threshold, and results from the detrimental 

effects of the transverse (often vertical) components of the lift and drag forces acting on the body. 

Aerodynamic forces produce a negative aerodynamic damping effect that can nullify the total 

damping available. Therefore, galloping is a (wind) velocity-dependent, damping-controlled 

instability problem (Païdoussis et al., 2011).  

 

The propensity to galloping instability is governed by the static aerodynamic coefficients and their 

derivatives with respect to an initial angle of attack, which coincides with the mean-wind incoming 
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flow direction in the classic Den Hartog criterion. Reliable estimate of the force coefficients, only 

possible by wind tunnel tests for most body shapes, is essential for a correct assessment of the 

galloping conditions. Unfortunately, several uncertainties exist. They arise either from simplified 

external flow conditions, experimental estimation errors or structural damping predictions 

(Pagnini et al., 2017), besides modelling approximations of the static coefficients (e.g., Ng et al., 

2005). For example, flow conditions affect the galloping onset through turbulence intensity (and 

scale), and air density. Structural properties can be either accurately determined, such as the 

fundamental frequency of the transverse mode, or poorly assigned, such as the structural damping 

(inherently random). Aerodynamic parameters can be either inferred by extrapolation using 

measures carried out on similar body shapes or found by specific wind tunnel tests. In all cases, 

uncertainty analysis is necessary to characterize the sensitivity to the galloping onset, especially 

those variables resulting from the selection of the aerodynamic coefficients, either associated with 

experimental wind tunnel errors, or extrapolation of their values from design standards, which 

often recommend very scattered values even for a cross section as simple as a square. Uncertainty 

analysis also needs the use of stochastic (or perturbation) methods or Monte Carlo sampling, both 

of which are not ideal for preliminary design since they require computationally expensive 

dynamic analysis, either at incipient instability or to predict the post-critical vibration ranges.  

 

The purpose of this study is to explore the use of Artificial Neural Networks (ANNs) to enhance 

galloping analysis by simplifying and replacing closed-form solution to the incipient galloping 

critical velocity. Various polynomial approximations of the transverse static force coefficient can 

be considered to describe the aerodynamic force. The case of the square section prism is examined 

since a comprehensive collection of experimental data is available and may be used to derive 

suitable polynomial approximations along with their variability. This study is the first step towards 

future implementation of post-critical, nonlinear dynamic analysis using ANN-based approaches. 

 

2. BACKGROUND ON GALLOPING INSTABILITY  

The classical solution to galloping instability can be recast into a reduced-order model describing 

the transverse motion (with respect to mean wind direction) through an equivalent one degree-of-

freedom system. The model can be interpreted as a generic structural mode of a more complex 

structural system. The critical galloping instability can be conveniently expressed in terms of 

dimensionless quantities through dynamic similarity; the dimensionless equation of the galloping 

critical velocity 𝑈𝑐𝑟 [m/s] is: 

𝑈𝑐𝑟 (𝑛0𝐵)⁄ = 2 Sc {− (
𝑑𝐶𝐿

𝑑𝛼
+ 𝐶𝐷)

𝛼=𝛼0

}⁄  (1) 

where the reduced critical velocity 𝑈𝑅 = 𝑈𝑐𝑟 𝑛0𝐵⁄  is proportional to the Scruton number Sc =
4𝜋𝑚 𝜁0 𝜌𝐵2⁄ .  In the previous equation  is the air density, 𝐵 is a reference width of the cross 

section, 𝑚  is an equivalent mass per unit length, 𝑛0  is the fundamental frequency of the 

transverse mode involved, 𝜁0 is the modal structural damping ratio; 𝐶𝐷(𝛼) and 𝐶𝐿(𝛼) are the 

drag and lift static aerodynamic coefficients at mean angle of attack 𝛼 = 𝛼0 , or mean flow 

direction referred to incipient instability. The necessary condition for galloping to occur is that 
{(d𝐶𝐿 d𝛼⁄ + 𝐶𝐷)𝛼=0} < 0  (Den Hartog’s criterion). The quantity [(𝑑𝐶𝐿 𝑑𝛼⁄ ) + 𝐶𝐷]𝛼=𝛼0  is the 

first-order Taylor expansion of the quasi-static transverse force coefficient 𝐶𝐹𝑦
(𝛼) ≈

−[(𝑑𝐶𝐿 𝑑𝛼⁄ ) + 𝐶𝐷]𝛼=𝛼0(𝛼 − 𝛼0) about an initial angle 0, which may not be exactly zero but still 

close to it. This condition is possible at full scale because of the inherent variability in the wind 

direction compared to a hypothetical initial angle 𝛼0 ≈ 0. A polynomial expression has been 



 

 

proposed to represent the force coefficient 𝐶𝐹𝑦
 at various mean-wind incidence angles 𝛼 since 

the pioneering works on galloping (e.g., Parkinson and Smith, 1964):  
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Eq. (2) can be applied to galloping since the velocity of the transverse vibration �̇� is related, 

through dimensionless velocity quantity �̇�/𝑈, to instantaneous dynamic angles of attack 𝛼.  If the 

initial condition 𝛼0 = 0 is exact, 𝐴 is only necessary for critical condition assessment, unless a 

flatter 𝐶𝐹𝑦 curve is found experimentally, with 𝐴 ≈ 0 and 𝐵 being the first significant term. This 

remark is clearly connected to the avenues of uncertainty, previously described. The galloping 

condition in Eq. (1) is even more uncertain if 𝛼0 ≠ 0 (slightly) and the previous expression is 

used to predict the first derivative of 𝐶𝐹𝑦 . Furthermore, Eq. (1) is only approximate if 𝛼0 ≠ 0 

(Nikita and Macdonald, 2014); this can lead to additional errors in the estimation of galloping 

threshold if A in Eq. (2) is used to express the 𝐶𝐹𝑦
 term.  

 

3. PROPOSED METODOLOGY 

The ANN (e.g., Rumelhart and McClelland, 1987; Hornik at al., 1989) is a computer algorithm 

that imitates the behavior of brain synapses through interconnected “neurons” to reconstruct the 

nonlinear relationship between a set of independent input variables 𝑥𝑘 and output variables 𝑦𝑖. 

ANN neurons are organized in an input layer, hidden layer(s), and an output layer. Each neuron in 

each layer is connected to each node of an adjacent layer. Hidden layers result from calculations 

using the input layer and outcomes are propagated to the next layer. The output layer is the final 

calculation result. The generic input-output calculation makes use of a transfer or “activation” 

function g(. )  between adjacent layers. If a three-layer ANN is used (Fig. 1) the following 

equation can be used to predict the generic output 𝑦𝑖 (with 𝑖 = 1,2, … , 𝑁𝑜), accounting for all 

synapses originating from all the inputs 𝑥𝑘 (with 𝑁𝑖 number of inputs): 

𝑦𝑖 = g [∑ (𝑤𝑖𝑗g(∑ 𝑣𝑗𝑘𝑥𝑘 + 𝜃𝑣𝑗
𝑁𝑖
𝑘=1 ) + 𝜃𝑤𝑖)

𝑁ℎ
𝑗=1 ] (3) 

In the previous equation 𝑤𝑖𝑗 are “connective weights” between any two nodes in the hidden and 

output layers; 𝑣𝑗𝑘 are “connective weights” between any two nodes in the input and hidden layer; 

𝜃𝑣𝑗 and 𝜃𝑤𝑖 are bias terms; the symbols, 𝑁𝑖, 𝑁ℎ, and 𝑁𝑜 represent the numbers of nodes in the 

input, hidden and output layers, respectively; g is a transfer (or activation) function. An ANN 

model can be employed for predictions only after calibration of the hyperparameters, which is 

carried out using an existing set of input-output data. The calibration is usually carried out in three 

steps: training, validation and testing. In this study, the training of the ANN is performed through 

a standard back-propagation algorithm that involves error minimization. More specifically, the 

variables 𝑥𝑘 with 𝑁𝑖 > 1 are the Scruton number Sc,  an estimation of the initial, mean-wind 

incidence angle 𝛼0 (equal or close to 0), the order of the polynomial used to approximate 𝐶𝐹𝑦
  

by Eq. (2) and the coefficients 𝐴  through 𝐹  of the polynomial approximation. The output 

variable 𝑦𝑖 with 𝑁𝑜 = 1 is the reduced critical velocity 𝑈𝑐𝑟 (𝑛0𝐵)⁄ .  
 

4. DISCUSSION AND OUTLOOK  

The study will examine several ANN architectures (i.e., number of hidden layers and their neurons) 

for the prediction of 𝑈𝑐𝑟 (𝑛0𝐵)⁄  by varying the order of the polynomial used to describe Eq. (2). 

Two section geometries will be investigated: a theoretical shape of a square cylinder with sharp 

edges, and a more realistic body shape with rounded edges. Experimental data on square cylinders 



 

 

and the approach proposed by Pagnini et al. (2017) will be used to derive the coefficients 𝐴 to 𝐹 

that describe the static coefficients in Eq. (2) along with their uncertainty. Information from a 

previous investigation on ANN methods applied to aeroelastic instability will be considered (Rizzo 

and Caracoglia, 2020). Fig. 1a illustrates a typical ANN architecture with one hidden layer. Fig. 

1b presents a preliminary example of numerical simulation results; 𝑈𝑐𝑟 (𝑛0𝐵)⁄  is predicted by an 

ANN model “1-30-1” (𝑁𝑖 = 1, 𝑁ℎ = 30, 𝑁𝑜 = 1) and is compared against the theoretical solution 

in Eq. (1) by suitable variation of Sc (i.e., from 30 to 40, to keep the quasi-steady theory valid) and 

A within a typical range (i.e., from 3 to 4; e.g., Ng et al., 2005). ANN prediction gives a relative 

error of less than 1%. 

(a)   (b) 
 

Figure 1. (a) Typical ANN architecture with one hidden layer, (b) square-prism galloping analysis with ANN-based 

model: Sc and A coefficient vs. galloping critical reduced velocity 𝑈𝑐𝑟 (𝑛0𝐵)⁄ . 
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